Surface Characterization of Nanoparticles: critical needs and significant challenges.
نویسنده
چکیده
There is a growing recognition that nanoparticles and other nanostructured materials are sometimes inadequately characterized and that this may limit or even invalidate some of the conclusions regarding particle properties and behavior. A number of international organizations are working to establish the essential measurement requirements that enable adequate understanding of nanoparticle properties for both technological applications and for environmental health issues. Our research on the interaction of iron metal-core oxide-shell nanoparticles with environmental contaminants and studies of the behaviors of ceria nanoparticles, with a variety of medical, catalysis and energy applications, have highlighted a number of common nanoparticle characterization challenges that have not been fully recognized by parts of the research community. This short review outlines some of these characterization challenges based on our research observations and using other results reported in the literature. Issues highlighted include: 1) the importance of surfaces and surface characterization, 2) nanoparticles are often not created equal - subtle differences in synthesis and processing can have large impacts; 3) nanoparticles frequently change with time having lifetime implications for products and complicating understanding of health and safety impacts; 4) the high sensitivity of nanoparticles to their environment complicates characterization and applications in many ways; 5) nanoparticles are highly unstable and easily altered (damaged) during analysis.
منابع مشابه
Superhydrophobic clothes: preparation and characterization
A superhydrophobic surface is coated on the surface of a cloth by MTCS (methyltrichlorosilane) nanoparticles and then, it is modified by SiO2–m–FTCS (1H,1H,2H,2H-Perfluorododecyltrichlorosilane) nanoparticles. This surface is characterized by SEM(scanning electron microscopy), and FT-IR (Fourier transform-infrared microscopy) and also its contact angle is investigated in various conditions and ...
متن کاملPreparation of Promoted Ni0.1Co0.9Fe2O4 Ferrite Nanoparticles and Investigation of Its Catalytic Activity on Decomposition of H2O2 and Optical Characterization of Pure Ni0.1Co0.9Fe2O4
Pure and ZnO-doped Ni0.1Co0.9Fe2O4 catalyst were prepared by co-precipitation method and thermal decomposition in air calcinated at 400-700°C and that treated with different amounts of zinc nitrate (0.46-2.25 w% ZnO). X-ray powder diffractometry, scanning electron microscopy (SEM) and BET analysis of nitrogen adsorption isotherms investigated the crystalline bulk structure and the surface area ...
متن کاملPreparation of Promoted Ni0.1Co0.9Fe2O4 Ferrite Nanoparticles and Investigation of Its Catalytic Activity on Decomposition of H2O2 and Optical Characterization of Pure Ni0.1Co0.9Fe2O4
Pure and ZnO-doped Ni0.1Co0.9Fe2O4 catalyst were prepared by co-precipitation method and thermal decomposition in air calcinated at 400-700°C and that treated with different amounts of zinc nitrate (0.46-2.25 w% ZnO). X-ray powder diffractometry, scanning electron microscopy (SEM) and BET analysis of nitrogen adsorption isotherms investigated the crystalline bulk structure and the surface area ...
متن کاملModification of Silica surface by Titanium sol synthesis and characterization
Hydrophobic silica titanium nanoparticles (STNPs) were successfully synthesized by the sol-gel process using liquid modification. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) studies were demonstrated the attachment of titanium on the silica surface. Titanium content enhanced the agglomeration of particles as shown in topography results. The N2 adsorption-desorption followed T...
متن کاملPARTICLE SIZE CHARACTERIZATION OF NANOPARTICLES – A PRACTICALAPPROACH
Abstract: Most properties of nanoparticles are size-dependent. In fact, the novel properties of nanoaprticles do not prevail until the size has been reduced to the nanometer scale. The particle size and size distribution of alumina nanoparticle, as a critical properties, have been determined by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), surface area analysis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of surface analysis
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2011